CESMIX Established for Advance Predictive Simulation


A new research effort aims to advance the state-of-the-art in predictive simulation as well as shape new interdisciplinary graduate education programs at the intersection of computational science and computer science at MIT. The Center for Exascale Simulation of Materials in Extreme Environments (CESMIX) — based at the Center for Computational Science and Engineering (CCSE) within the MIT Stephen A. Schwarzman College of Computing — will bring together researchers in numerical algorithms and scientific computing, quantum chemistry, materials science, and computer science to connect quantum and molecular simulations of materials with advanced programming languages, compiler technologies, and software performance engineering tools, underpinned by rigorous approaches to statistical inference and uncertainty quantification.

“One of the goals of CESMIX is to build a substantive link between computer science and computational science and engineering, something that historically has been hard to do, but is sorely needed,” says Daniel Huttenlocher, dean of the MIT Schwarzman College of Computing. “The center will also provide opportunities for faculty, researchers, and students across MIT to interact intellectually and create a new synthesis of different disciplines, which is central to the mission of the college.”


Professor Youssef Marzouk

Leading the project as principal investigator is Youssef Marzouk, professor of aeronautics and astronautics and co-director of CCSE, which was renamed from the Center of Computational Engineering in January to reflect its strengthening engagement with the sciences at MIT. Marzouk, who is also a member of the Statistics and Data Science Center, notes that “CESMIX is trying to do two things simultaneously. On the one hand, we want to solve an incredibly challenging multiscale simulation problem, harnessing quantum mechanical models of complex materials to achieve unprecedented accuracy at the engineering scale. On the other hand, we want to create tools that make development and holistic performance engineering of the associated software stack as easy as possible, to achieve top performance on the coming generation of exascale computational hardware.”

For more detail, please click here.