System Helps Severely Motor-Impaired Individuals Type

picture1

In 1995, French fashion magazine editor Jean-Dominique Bauby suffered a seizure while driving a car, which left him with a condition known as locked-in syndrome, a neurological disease in which the patient is completely paralyzed and can only move muscles that control the eyes. Bauby, who had signed a book contract shortly before his accident, wrote the memoir “The Diving Bell and the Butterfly” using a dictation system in which his speech therapist recited the alphabet and he would blink when she said the correct letter. They wrote the 130-page book one blink at a time.

Technology has come a long way since Bauby’s accident. Many individuals with severe motor impairments caused by locked-in syndrome, cerebral palsy, amyotrophic lateral sclerosis, or other conditions can communicate using computer interfaces where they select letters or words in an onscreen grid by activating a single switch, often by pressing a button, releasing a puff of air, or blinking. But these row-column scanning systems are very rigid, and, similar to the technique used by Bauby’s speech therapist, they highlight each option one at a time, making them frustratingly slow for some users. And they are not suitable for tasks where options can’t be arranged in a grid, like drawing, browsing the web, or gaming.

A more flexible system being developed by researchers at MIT places individual selection indicators next to each option on a computer screen. The indicators can be placed anywhere — next to anything someone might click with a mouse — so a user does not need to cycle through a grid of choices to make selections. The system, called Nomon, incorporates probabilistic reasoning to learn how users make selections, and then adjusts the interface to improve their speed and accuracy. Participants in a user study were able to type faster using Nomon than with a row-column scanning system. The users also performed better on a picture selection task, demonstrating how Nomon could be used for more than typing.

“It is so cool and exciting to be able to develop software that has the potential to really help people. Being able to find those signals and turn them into communication as we are used to it is a really interesting problem,” says senior author Tamara Broderick, an associate professor in the MIT Department of Electrical Engineering and Computer Science (EECS) and a member of the Laboratory for Information and Decision Systems and the Institute for Data, Systems, and Society. Joining Broderick on the paper are lead author Nicholas Bonaker, an EECS graduate student; Emli-Mari Nel, head of innovation and machine learning at Averly and a visiting lecturer at the University of Witwatersrand in South Africa; and Keith Vertanen, an associate professor at Michigan Tech. The research is being presented at the ACM Conference on Human Factors in Computing Systems.

For more, please click here.

Professor Tamara Broderick
Professor Tamara Broderick
picture1